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Abstract- NASA has been collecting massive amounts of 
remote sensing data about Earth's systems for more than a 
decade. Missions are selected to be complementary in 
quantities measured, retrieval techniques, and sampling 
characteristics, so these datasets are highly synergistic. To 
fully exploit this, a rigorous methodology for combining 
data with heterogeneous sampling characteristics is 
required. For scientific purposes, the methodology must 
also provide quantitative measures of uncertainty that 
propagate input-data uncertainty appropriately. We view 
this as a statistical inference problem. The true but not-
directly-observed quantities form a vector-valued field 
continuous in space and time. Our goal is to infer those true 
values or some function of them, and provide to uncertainty 
quantification for those inferences. We use a spatio-
temporal statistical model that relates the unobserved 
quantities of interest at point-level to the spatially 
aggregated, observed data. We describe and illustrate our 
method using CO2 data from two NASA data sets.  
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1. INTRODUCTION 
 

The motivation for this work is the need to combine data from 
two remote sensing instruments to paint a complete and 
quantitative picture of the distribution of carbon dioxide (CO2) 
in the lower part of Earth’s atmosphere. CO2 enters and leaves 
the atmosphere only near the surface, and so monitoring 
changes in this important greenhouse gas near the surface may 
shed light on sources and sinks of CO2 in the Earth’s system. 
However, no instrument observes everywhere all the time so 
the best way to get a complete global picture is to combine 
information from multiple sources. In addition, different 
satellite instruments use different technologies and have 
different strengths and weaknesses. Combining their data 
provides the added advantage of capitalizing on complementary 
strengths.  Finally, if the combined data are to be useful for 
scientific analyses and policy making, quantitative uncertainty 
measures must be provided.  
 
In this article, we show how mid-tropospheric CO2 data from 
NASA’s Atmospheric Infrared Sounder (AIRS) can be 
combined with total column CO2 data from NASA’s 
Atmospheric Carbon Dioxide Observations from Space 
(ACOS; based on data from Japan’s Greenhouse Gases 
Observing Satellite (GOSAT)) to estimate CO2 in the lower 
atmosphere. In Section 2, we describe our methodology, and in 
Section 3 we provide estimates and their uncertainties of lower 

atmosphere CO2 over the continental US for 15 days in June 
2009. We conclude with a discussion in Section 4.  

 
2. SPATIO-TEMPORAL DATA FUSION 

 
Consider two different remote sensing instruments’ views of a 
spatial field at a single instant in time as shown in the top panel 
of Figure 1. The two instruments discretize the scene 
differently and add measurement errors with different biases 
and variances to the discretized pixel values. The instruments 
will also typically have different patterns of missingness, as 
shown by the black pixels. Presented with only the middle 
images in Figure 1, could we infer the true fields shown on the 
left? Could we infer the true fields from the images on the right 
alone? The answer is yes in both cases if we can rigorously 
account for: 1) the fact that pixel values are spatial averages, 2) 
the fact that there is measurement error associated with pixel 
values, and 3) the fact that there is spatial correlation in the true 
field. We could make even better inferences if we could exploit 
the middle and right images simultaneously, and do better yet if 
could make use information across time periods. 

 

Figure 1. Left panels: examples of a true, spatially continuous 
geophysical field at two successive time points. Middle panels: 

the field as viewed by a remote sensing instrument. Right 
panels: the field as viewed by another remote sensing 

instrument. 

Here we suggest a formal statistical framework for inferring the 
true value of the geophysical field at any point location, s, 
using remote sensing observations from two instruments at 
multiple time points. We begin by focusing on a single time 
point.  



 
The relationships between the true field at a single point in time 
and the corresponding instrument images in the middle and 
right panels of Figure 1 can be formalized. Let Y (s)  be a 
random variable representing the true, underlying geophysical 
phenomenon of interest. The top-left panel of Figure 1 is an 
image of Y (s)  for all locations in the domain. Let B1 (s)  be a 
pixel, centered at s, observed by instrument 1, and let B2 (s)  
be a pixel, centered at s, observed by instrument 2. In general, 
the pixels for two instruments can be different. Let 

 
 

          Z1 (B1 (s)) =
1

| B1 (s) |
Y (ss∈B1( s )

∫ )ds +ε1 (B1 (s)) ,     (1) 

 
and 
 

          Z 2 (B2 (s)) =
1

| B2 (s) |
Y (ss∈B2( s )

∫ )ds +ε 2 (B2 (s)),  (2) 

 
 

where Z j (B j (s))  is the value observed by instrument j  in the 

pixel B j (s) , B j (s)  is the area of the pixel, and ε j (B j (s))    is 
the measurement error. Denote the set of observations from 
instrument j  by 

  
Z j = (Z j (B j (s j1 )),K,Z j (B j (s jN j

)) ′ ) , where 
prime indicates vector transpose, and N j  is the number of 
observations. This is a column vector formed by concatenating 
all non-missing observations for the instrument. For any 
location s in the domain, Y (s)  can be optimally estimated as a 
linear combination of the available observations from 
instrument j  by ˜ Y j (s) = ′ a jsZ j . Optimal estimates are obtained 
by solving for the coefficient vectors, a js , that minimize  
 
 
          MSE(Y (s), ˜ Y j (s)) = E Y (s)− ′ a jsZ j

2
   (3) 

 
 
subject to the unbiasedness constraint,  
 
 
          E(Y (s)) = E( ˜ Y j (s)) = E( ′ a jsZ j ) ,    (4) 

 
 
where E(⋅)  is the statistical expectation operator. The two 
estimates ˜ Y 1(s)  and ˜ Y 2(s)  are unbiased and optimal in the sense 
of having minimum mean squared error given their respective  
input data, but they will not be identical. Their mean squared 
errors given in (3) will also be different and the one with the 
lower value is preferred.   
 
Now suppose we form an estimator that uses both instruments’ 
data simultaneously: 
 
 
          ˆ Y (s) = ′ b 1sZ1 + ′ b 2sZ2 .     (5) 

 
 

The coefficients b js  are obtained by minimizing 
 
 
          MSE(Y (s), ˆ Y (s)) = E Y (s)− ( ′ b 1sZ1 + ′ b 2sZ2 )

2
 (6) 

 
subject to,  
 
          E(Y (s)) = E( ˆ Y (s)) = E( ′ b 1sZ1 + ′ b 2sZ2).   (7) 

 
 
Now, MSE(Y (s), ˆ Y (s)) ≤ min j MSE(Y(s), ˜ Y j (s))[ ]  because if 

either instrument’s data were to contain no “useful” 
information, the corresponding b js  would be the zero vector. 

We call the estimates ˜ Y 1(s)  and ˜ Y 2(s)  kriging estimators and 
ˆ Y (s)  the statistical data fusion estimator.  

 
Solving the constrained minimization problems in (3), (4), (6), 
and (7) requires expanding the expressions for mean squared 
error and substituting in the definitions (1) and (2). This results 
in a set of terms that depend on various parameters of the joint 
(spatial) distribution of the true field, such as Cov(Y (si ),Y (s j )) , 
for all pairs of locations (si ,s j )  in the domain.  
 
Estimating these distributional parameters requires some 
additional modeling assumptions. In particular, we assume  
Y (s)  behaves according to a spatial mixed effects model, 
 
 
          Y(s) = t(s ′ ) α +ν(s),    ν(s) = S(s ′ ) η+ξ(s) .   (8) 

 
 
The term t(s ′ ) α is the spatial trend and captures the effect of 
simple explanatory variables. For example, t(s)  may be the 
latitude and longitude of s . The trend term reflects a modeling 
assumption that, to a coarse approximation, the value of Y(s)  
can be “explained” by its latitude and longitude. The term ν(s)  
explains additional variation in Y(s)  not captured by the trend. 
This additional variation has spatial structure: Y(si )  may be 
correlated with Y(s j )  where si  and s j  are two different spatial 
locations. The term ν(s)  is further broken down into S(s ′ ) η  
and ξ(s), where η  is a hidden (unobserved) vector-valued 
random variable that captures key features of the spatial-
dependence structure in the domain. The coefficient vector S(s) 
provides location-specific weights for combining the elements 
of η  to produce a contribution to ν(s)  for each specific 
location. Finally, ξ(s), called fine-scale variation, is a residual 
term to account for variation in ν(s)  not accounted for by 
S(s ′ ) η .  
 
Nguyen, Cressie and Braverman (2010) use (1) - (8) to 
formulate and implement Spatial Statistical Data Fusion 
(SSDF), a methodology for optimally estimating Y(s)  from 
two remote sensing data sets with different statistical 
characteristics (at a single time point). For SSDF it is not 
necessary to explicitly estimate η . The derivations of the data 
fusion coefficients, the optimal estimate ˆ Y (s) , and its 



uncertainty depend on η  only through its covariance matrix, so 
this covariance matrix is estimated directly.  
 
Space-time Data Fusion (STDF) builds on SSDF by assuming 
that the random vector η  evolves in time according to a lag-1 
auto-regressive process (AR(1)). That is, at each time step, one 
can exploit not only spatial dependence in the domain at that 
time, but also the temporal dependence with the previous time 
step via the relationship betweenηt  and ηt−1 . Our STDF 
methodology is motivated by Cressie, Shi, and Kang (2010) 
who introduced Fixed Rank Filtering (FRF), a framework for 
capturing temporal dependence in the context of optimal 
estimation from a single data set.    
 
Suppose now that we have access to data at more than one time 
point, say t −1 (top panel in Figure 1) and t  (bottom panel in 
Figure 1). The evolution of the spatial dependence structure is 
described by a first-order autoregressive relationship between 
ηt−1 , and ηt . The space-time data fusion estimator of Y  at 
location s  and time t , ˆ Y (s,t), is based on the optimal 
estimation of ηt  through a Kalman Filter.   
 
Using the model in (8), the data fusion estimator and its mean 
squared error are, 
 
 
          ˆ Y (s,t) = t(s ′ ) ˆ α t + S(s ′ ) ˆ η t|t + ˆ ξ t|t (s) ,   (9) 

 
 

         MSE(Y (s,t), ˆ Y (s,t)) = E(Y (s,t)− ˆ Y (s,t))2,                (10) 
 
 

where  
 
 

           ̂ η t|t = E(ηt |Z1(1),K,Z1(t),Z2(1),K,Z2(t)) ,               (11) 
 
 

  
ˆ ξ t|t (s) = E(ξ(s,t) |Z1(1),K,Z1(t),Z2(1),K,Z2(t)) ,             (12) 

 
 

and E(⋅ | ⋅) is the statistical expectation of the quantity on the 
left of the bar, given the quantity on the right. All parameters or 
their estimates that vary in time are subscripted by t . The  
subscript t | t  indicates that the subscripted variable is 
statistically conditional on all information up through and 
including time t , and Z j (t)  is the vector of observations from 
instrument j  at time t . Note that we do not explicitly derive 
the data fusion coefficients because they are not of interest in 
and of themselves. The formulas required to compute (9) – (12) 
can be obtained by concatenating the data vectors Z1(t)  and 
Z2(t)  into a supervector, making commensurate adjustment to 
covariance matrices and other quantities, and applying the fixed 
rank filtering formulas given by Cressie, Shi, and Kang (2010). 
Interested readers can find details and a thorough discussion 
there.  
 
 

3. ESTIMATING CO2 IN THE LOWER 
ATMOSPHERE FROM AIRS AND ACOS 

Our goal is to estimate the amount of CO2 in the lower part of 
the atmosphere using data from AIRS and ACOS. AIRS 
retrieves mid-tropospheric CO2 on 90 km footprints with near-
global coverage every three days. ACOS retrieves total column 
CO2 on 10 km footprints spaced about 150 km apart, in a 
narrow swath that repeats every three days.  

The theory in the previous section assumes Y(s,t) is a scalar, 
and instruments 1 and 2 both measure this quantity with 
different resolutions and other sampling characteristics. AIRS 
and ACOS do not measure the thing: AIRS measures the 
amount of CO2 in the mid-troposphere and above, and ACOS 
measures the amount of CO2 in the total column. The 
sensitivities of the two to different vertical levels in the 
atmosphere are depicted in the lower-left panel of Figure 2. To 
estimate CO2 in the lower atmosphere, we need to estimate the 
difference between ACOS and AIRS CO2 values. Fortunately, 
the theory in Section 2 easily accommodates this. 

 
 

Figure 2. Sampling characteristics of AIRS (red) and ACOS 
(blue). The lower-left show sensitivities of the two instruments 

to different atmospheric levels. 

Let Y1(s,t) be the true amount of CO2 in the mid-troposphere 
and above at location s and time t , and let Y2(s,t) be the true 
amount of CO2 in the total column at location s and time t . 
Let Y(s,t) = (Y1(s,t),Y2(s,t) ′ ) . The entire STDF methodology 
presented in Section 2 generalizes for this vector-valued case in  
enable simultaneous inference of the pair (Y1(s,t),Y2(s,t) ′ ) . In 
fact, there may be additional benefit if the components of 



Y(s,t) are correlated, as they surely are in this case. The 
methodology automatically exploits such correlations to 
improve the inferences and reduce uncertainties. The estimate 
of CO2 in the lower atmosphere is simply ′ c Y(s,t) , where ′ c  is 
the row vector (-1, 1). The mean squared error of this estimate 
is ′ c Σ(s,t)c , where Σ(s,t)  is the mean-squared-error matrix of 
Y(s,t). 
 
 

 
 

Figure 3. STDF estimate of CO2 in the lower atmosphere 
derived as the fused difference between ACOS and AIRS 

measurements (top), and the square-root of the mean squared 
errors of those estimates (bottom). 

We applied STDF to 30 days of AIRS and ACOS data for June 
2009 to estimate CO2 in the lower atmosphere over the 
continental US. Time t =1 was designated June 16-30, and 
time t = 0  was designated June 1-15. The spatial sampling of 
AIRS and ACOS data are shown in the top portion of Figure 2. 
Over the continental US, there were a total of 8407 AIRS data 
points and 1368 ACOS data points in June 2009. It took about 
20 seconds on 2.8 GHz MacBook Pro laptop to produce 3284 
estimates, and their mean squared errors, spaced every half-
degree. Figure 3 shows the estimates and the corresponding 
square-root mean squared errors.  These extremely fast 
computations are possible because of the specification of the 
spatial-dependence structure in (8) using S(s ′ ) η, which leads to 

a fast procedure for estimating and inverting the large matrix 
Cov(Y (si ),Y (s j )) .  

4.  DISCUSSION 
 

We have demonstrated that STDF can be used to leverage both 
spatial and temporal dependence to estimate a function of two 
spatially continuous geophysical fields from noisy observations 
with different statistical characteristics. The maps in Figure 3 
look like they may provide reasonable estimates, but these have 
yet to be validated against independent in-situ oberservations. 
The effect of using only land data, however, is evident in the 
uncertainties in coastal areas. Inland Texas and New Mexico 
also show elevated uncertainties that must be investigated, 
especially because of the hot spot in this area in the top panel of 
Figure 3. It is also worth emphasizing that the validity of both 
the estimates and uncertainties depends on the means and 
standard deviations of the measurement error distributions 
associated with the terms ε1(B1(s))  and ε2(B2(s))  in Equations 
(1) and (2), and on other modeling choices discussed in 
Sections 2.1 and 2.2. In this exercise, we used measurement-
error statistics based on the judgment and experience of 
members of the AIRS and ACOS teams. A more rigorous 
analysis will ultimately be required as will a careful evaluation 
of the sensitivities of our results to the other modeling 
assumptions. 

Near-term methodological improvements center on reducing 
the duration of a time step in the STDF analysis. Currently, our 
method aggregates data over 15 days because the ACOS data 
are sparse, and estimates of statistical model parameters are 
unstable with fewer observations. However, CO2 transport 
occurs on shorter time scales, and the science community 
would prefer time steps on the order of three days.  We have 
used the method of moments to estimate model parameters 
here, but we are investigating expectation maximization (EM) 
as a more stable alternative. We are also beginning the process 
of validating our lower atmosphere CO2 estimates by 
comparing them to in-situ observations with the help of the 
AIRS and ACOS validation teams.  
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